

Proton Tests of the Power PC750 Microprocessor

S. Guertin, F. Farmanesh, G. Swift, T. Miyahira

Jet Propulsion Laboratory, California Institute of Technology Funded by NASA's RE&E Program

Contents

- Interested Projects: RE&E, LTMPF
- Overview of the Power PC750 Architecture
- General Testing Difficulties
- Register Testing
- Board Level Testing
- Future Plans
- Conclusions/Summary

Interested Projects

Remote Exploration and Experimentation (RE&E)

- Charged with building a super computer (or supercomputer abilities) for space
 - Requires Many Processors
 - Requires Latest and Greatest Devices
- Intend to use modeling to imitate radiation fault injection
 - Need accurate SEU rates
- Expected to be used in missions of varying orbit parameters
- Must keep current
 - PPC 750 will fade as faster processors are embraced in the commercial market
 - Pushing the need for test methods and methodology, not test results (directly)

Low Temperature Microgravity Physics Facility (LTMPF) Mission

- LTMPF is designated as a test bed for physics experiments
- Multiple experiments designed for the microgravity environment will fly
- This is a Space Station mission
 - Will fly in low Earth orbit
 - Will swap between two "facilities"
 - Allows retooling for another experiment
 - ▲ Acts as something like redundancy

Power PC750 Overview - Block Diagram

Each independent block may have upset problems

- Registers
- Branching Unit
- Integer Units
- Floating Point Units
- MMUs
- L2 Controller
- Instruction Unit
- Load/Store Unit

In addtion to these there are other sources

- Pipelining difficulties
- Exception Handling
- General Lock-up conditions

Power PC750 Overview - Internal Specifications

- 3 Instructions per Clock, Superscalar RISC architecture
- Up to 400 MHz (.25μm process; 266 MHz for .29 *Motorola Features)
- 32 bit address / 64 bit data buses
- L1 Cache
 - 32K Data
 - 32K Instruction
- MIPS
 - 488 at 266MHz
 - 733 at 400MHz
- Manufacturers
 - Motorola
 - IBM
 - Thomson

Testing Difficulties

- The Package Layout of the Power PC 750 Microprocessor forced proton testing
 - Ball Grid Array
 - Flip Chip
 - Requires rages of > 200μm to reach
- Test Hardware
 - Complexity forced board-level testing
 - LTMPF Testing done as board-level also
- Latchup Monitoring
 - ATX Power Supply Imitation

Generic SEE Testing Methodology

Addressed Items in REE Testing (To Date)

- Proton Latchup Addressed with ATX power supply imitation
- Register Upsets

Test Hardware

Motorola's Yellowknife X4 Evaluation Board

Test Flow

- Setup the test board with known register values, and in known state
- Run a simple branch loop with no control code
- Irradiate the device
- Break out with an external interrupt
- Check the state of the registers and record any changes

Proton Testing Results

General Results

- Cross Section is fairly low but
- Results Confounded by single-event lockups
 - Coarse statistics

Specific Results

- Cross Section differs for 0 to 1 and 1 to 0 errors
- Evidence cannot show a difference in GPR and FPR rates

Board-Level LTMPF Testing

Test Boards

- Several were provided for testing at IUCF
- Included VME processor board primary test vehicle
- Also included Yellowknife board and PPC750 with on chip L2 cache

Test Programs

- Most test program details are unknown to us
- Processor Test
- L1 Cache Test
- L2 Cache Test
- Included many other components

Low Temperature Microgravity Physics Facility - External Space Station Component

Board Level LTMPF Test Results

Proton test results of the test types:

SEU Type Upset Rate

Processor ?/day

L1 Cache bits ?/day

L2 Cache bits ?/day

(will fill in the ?'s)

- LTMPF Testing was difficult because of on-board resources
 - Processor
 - Bridge Chip
 - Memory
 - Boot Rom/Flash

Future Testing

- LTMPF testing is helpful for the RE&E goal allowing comparison of different testing methods
- Additional test capabilities to be developed for RE&E's PPC750 objective
 - L1 Cache
 - Memory Management Units
 - Additional Special Function Registers
 - Exception Handling
- Heavy Ion testing most likely at Texas A&M in June
 - Lockheed Martin will provide thinned die (200, 100, and 50μm thick)
 - Testing will also be done with long range lighter ions at Brookhaven National Laboratory
- More Realistic Test Situations
 - There is a need to do real application testing
 - Plan is to do testing of application-like software packages under real operating systems.

Conclusions/Summary

Testing Complications

- Inexact Board-Level testing
- Custom Assembly-Level Software
- Processor Complexity is difficult to understand

Test Part Logistics

- Parts are both ball grid arrays and flip chips
 - Etching and Re-Packaging are not feasible
- Methods planned are not optimum because high energy facilities (needed to get through the back of thinned die) are more expensive

Application to the Real Client Software

- Test Results: Detailed Register Upset Information
 - Still difficult to determine on orbit upset rate of actual software
- Test Results: Board Level Test Results
 - This sort of testing doesn't identify actual upset type reliably
 - May be impossible to determine actual software response

Moderate SEU Susceptibility

- ◆ Internal bits have a roughly 2x10⁻⁷ per day upset rate for low inclination Earth orbit
- Given there are about 1 million such registers, this is about one register upset a week